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The effect of a periodic boundary condition (PBC) is examined for the percolation process in a square
and in simple cubic lattices by means of a Monte Carlo simulation. The universality of the critical ex-
ponent for correlation length is valid even for the systems with PBC. The threshold p, for PBC coin-
cides with the threshold for a free boundary condition in the site percolation of these lattices. We exam-
ine the effect of PBC for crystallization processes observed in the molecular dynamics simulation.

PACS number(s): 05.70.Fh, 64.60.Cn

I. INTRODUCTION

Percolation theory has been well known to be applied
to many problems in various field of investigations [1].
One of the basic themes in the theory has been to deter-
mine the accurate values of thresholds for various lat-
tices. In a practical approach, Monte Carlo (MC) simula-
tion has been well known to be a useful method in es-
timating their values [1-4]. The thresholds p, have been
derived from extrapolation of the effective thresholds
p(L) for the systems with finite spanning size L as
L->c,ie., p,=p(o)[1,2].

In usual MC simulations, the shape of the systems has
been chosen to be square in the case of two-dimensional
(2D) lattices and to be cubic in the case of 3D lattices.
The edges of these systems have been treated as a free
boundary condition (FBC). Landau [5] has found the
influence of a FBC has appeared in the Ising square lat-
tices: the effect of finite size has been greater for an FBC
than for a periodic boundary condition [6,7] (PBC).

By means of the MC simulations, Hoshen, Kopelman,
and Monberg have found the values of the effective
thresholds p (L) with a PBC have been almost equal to
the values with an FBC for the site process of the square
lattice [8]. Heermann and Stauffer have clarified that the
deviations of p(L) from p, have been larger for a PBC
than for an FBC in bond processes of the square lattice
[9]. Recently, Ziff has pointed out that obtaining more
precise values of p(L) for an FBC than for a PBC is
unusual [10]. The origin of the discrepancy, however,
has not been clarified yet.

When we examine the values of the thresholds p., we
extrapolate the effective thresholds p (L) as L — co. This
is based on the scaling rule p(L)<L ~!/%, where v is a
critical exponent for correlation length [1,11,12]. The ex-
ponent v is known to be a dimensional invariant which
depends only on the dimensions of lattices. The value of
the exponent v has been found to be v=1% for all lattices
in 2D and v=2 in 3D [1,4]. This shows the universality.
It has not been clarified, however, whether or not the
universality is valid even for the systems with a PBC. In
this paper the effect of boundary conditions in the per-
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colation process is examined by use of the MC simula-
tion. The site process has been simulated for the square
lattice and for the simple cubic lattice.

From the other point of view, the influence of a PBC
has been reported to appear in the crystallization process
of supercooled liquids simulated with the molecular dy-
namics (MD) method [13-15]. The time of onset of ca-
tastrophic growth has depended on the system size: the
time has increased with increasing size [14]. The origin,
however, has not been clarified for the increment of the
time. In this paper we apply the scaling rule in percola-
tion theory in order to study the effect of system size in
the MD simulation.

In Sec. II we will examine the influence of a PBC for
the effective thresholds. The statistical analysis for the
square lattice will be presented in Sec. III and for the
simple cubic lattice in Sec. IV. In Sec. V, the effect of a
PBC will be examined for the crystallization process
simulated with the MD method. Discussion will be given
in Sec. V1.

II. EFFECTIVE THRESHOLDS AND A PBC

First we have constructed an array of vacant sites on
the lattice points of the square lattice in 2D. Their total
number N has been N =L X L, where L is the number of
the sites on a side of the system. In the array of the va-
cant sites, an occupied site has been determined at ran-
dom in the system. Then the number of the occupied
sites in the system has been increased at random. Here
the cluster structure has been analyzed with the Hoshen-
Kopelman algorithm [16] from the occupied sites. The
cluster has been defined as a group of sites connected by
nearest-neighbor bonds. The increment procedure for
the occupied sites has been repeated until the percolation
cluster has first appeared through the system. Here the
percolation cluster has been defined as the cluster which
spans the square cell either horizontally or vertically.
This definition corresponds to rule R in Ref. [11].

Here let us see the configuration of the occupied sites
when the percolation cluster has first appeared on the lat-
tice. Figure 1(a) shows one of the samples for L =100
under an FBC. The sites are shown as small-filled
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squares in a square cell in this figure. The sites, the num-
ber of which is N, =5809 for this sample, scatter widely
in the cell. There are isolated sites and connected ones in
it. Figure 1(b) shows the shape of the percolation cluster
in the cell for the same sample as Fig. 1(a): the sites
shown in Fig. 1(b) have been picked out from the occu-
pied sites in Fig. 1(a). The cluster extends from the cen-
tral part on the left side of the cell to the upper part of
the right side of it. This shows horizontal-type percola-
tion under an FBC.

We examine the effect of a PBC for the percolation
process in the lattice. Figure 2(a) shows the configuration
of the cluster, which is the same cluster as Fig. 1(b), un-
der a PBC: the central cell accompanies eight replicas
around it. The replicas have the same cluster as the cen-
tral cell. No connection of the cluster appears on the left
side on the central cell. No connection also appears on
the right side of the central cell: a part of the cluster just
on the left side in the central cell does not connect with

FIG. 1. (a) One of the samples for the distribution of all the
occupied sites on the square lattice with an FBC. Their number
is N,=5809 which gives the first appearance of the percolation
cluster in the cell. The length of a side on the square cell is
L =100. (b) Shape of the percolation cluster in the cell. The
sites in (b), which belong to the cluster, are picked out from the
sites in (a). :
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FIG. 2. Development of the shape of the largest cluster on
the square lattice with a PBC. The length of a side on the cen-
tral square cell is L =100. The total numbers of the occupied
sites are (a) N, =5809, (b) N, =6040, and (c) N, =6268.
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the opposite part of it just on the right side of the left re-
plica. Although the percolation under an FBC has ap-
peared for the sample in Fig. 1(b), it disappears under a
PBC as shown in Fig. 2(a).

Here we have increased the number of occupied sites at
random and examined the development of the shape of
this cluster. Figure 2(b) shows the cluster with a PBC for
the number N, =6040 of the sites. Although the shape of
the cluster changes within the cell, no connection appears
on any side of the cell in this figure. This relation has
been valid up to the number N, =6267. Figure 2(c) shows
the cluster for the number N, =6268. This number has
given the first appearance of the connection cluster
through the sides of the cell: a part of the cluster just on
the left side of the central cell connects with a part of it
just on the right side of the left replica. This shows the
percolation appears under a PBC. Figures 2(a)-2(c) sug-
gest the percolation requires larger numbers of occupied
sites for a PBC than for an FBC. This shows the effective
thresholds are greater for a PBC than for an FBC in the
percolation process.

III. THRESHOLD ON THE SQUARE LATTICE

In this section we clarify the relation between the
effective thresholds and the system size L for the square
lattice by means of the MC simulation. First we have
simulated the percolation process with changing the sys-
tem size as L =20, 30, 40, 50, 60, and 100 for the lattice.
We have examined the number N; of occupied sits for the
first appearance of the percolation cluster for each L.
The number N, has been averaged with varying simula-
tion samples, i.e., varying the random-number seed, for
thousands of times for each L until the average value has
converged. Then we have converted it into the fraction
p(L)=N,/L?* which corresponds to the effective thresh-
old for the size L in the system. The results are summa-
rized in Table I, where the first column shows the size L,
the second the average fraction p¥BS(L) for an FBC, and
the third p?BS(L) for a PBC. The fractions p¥3(L) and
pPBE(L) correspond to the effective thresholds with an
FBC and with a PBC, respectively. The fractions
p¥BE(L) increase with increasing L as shown in Table L.
The fractions pPBC(L) increase with increasing L. The
fourth column in Table I shows the absolute values
Ap=|pFBS(L)—pPP(L)| of the differences between
pYBE(L) and pPPC(L). The differences decrease with in-
creasing L.

We examine the standard deviations of pFBC(L) and
pPBE(L) for each L. The fifth column in Table I shows

the deviations o 5§5C for pFS(L) and the sixth shows oF5€
for p¥BC(L). The deviations of5€ decrease with increas-

ing L. The deviations o£B€ have almost the same values

as of5C for each L: the o 5C also decrease with increas-
ing L.

Here we see, in more detail, the differences Ap between
the average fractions p¥P(L) and pPBS(L) in Table I.
The difference Ap for L =20 is 0.016 57 which is smaller
than 0f5€=0.04296 and than 0f5€=0.04096. This re-
lation is valid for all L in this table: all the differences Ap
are smaller than the ofEC and than the o5EC for each L.
The ratios 053¢ /Ap are shown in the seventh column in
the table. The ratios are almost constant between 2.42
and 2.65. This indicates the differences are smaller than
the deviations which show the extent of the statistical
fluctuations for the effective thresholds in this lattice.

Let us examine the value of the threshold p, as L — .

Here we have used the scaling rule [1]:
lpe —p(L)| =L~ (1)

where p, is the threshold for a system as L — o, p (L) the
effective thresholds for the system with finite size L, and
v the critical exponent for the correlation length. The ex-
ponent v has been known to be + for all lattices with an
FBC in 2D [1,4]. The relation (1) gives the other formu-
lation [11,12,17]

p(L)=p.+kL™", )

where k is a constant.

The effective thresholds pfS(L) and pPBS(L), which
have appeared in Table I, have been plotted against the
scaled size L; =L ~'/* with v=2%. Figure 3 shows the re-
sults. Filled squares are for p¥BS(L) and open ones for
pPBE(L). A linear relation appears between p¥B(L) and
L~'": the pfC%(L) increase linearly with decreasing
L~'Y", The straight line for p™®(L) shows the least-
square fitting of the values. The line intersects the abscis-
sa at p =0.5923 which deviates by only 0.075% from the
accurate value 0.592 746 of the threshold [10] for this lat-
tice. The thresholds pPBC(L) show the same relation as
pF¥BE(L): the pPBC(L) increase linearly with decreasing
L%, This shows the universality of the exponent v is
valid even for a PBC. The line for pPB¢(L) intersects the
abscissa at the same point as the above: the threshold for
a PBC coincides with the threshold for an FBC as
L.

Although the differences Ap between pFBS(L) and
pPBC(L) have been smaller than the standard deviations

TABLE 1. The effective thresholds and the standard deviations for the square lattice with an FBC

and a PBC.
L pL) pPPEL) Ap ofec ofac ot8C/Ap
20 0.568 81 0.585 38 0.016 57 0.042 96 0.04096 2.47
30 0.57500 0.587 57 0.01257 0.03390 0.03173 2.52
40 0.57776 0.58779 0.01003 0.027 49 0.026 60 2.65
50 0.580 30 0.58903 0.008 73 0.023 69 0.02222 2.55
60 0.58218 0.590 32 0.008 14 0.02101 0.019 69 2.42

100 0.585 34 0.590 94 0.005 60 0.01428 0.013 66 2.44
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FIG. 3. The effective thresholds against the scaled size
L,=L """ for the square lattice. The exponent v is % for this
system. Filled squares are for p¥®S(L) and open ones for
pPBC( L)

for each L as shown in Table I, the clear relation appears
between them as shown in Fig. 3: the effective thresholds
are closer to p, for a PBC than for an FBC in the case of
the site process of the square lattice.

IV. THRESHOLD ON THE SIMPLE CUBIC LATTICE

In this section we clarify the relation between the
effective thresholds and the system size L for the simple
cubic lattice by means of the MC simulation. First we
have constructed an array of the vacant sites with the to-
tal number N=L XL XL in the cubic cell. A percola-
tion process has been simulated with changing the system
size as L =12,15,18,20 for this lattice. We have exam-
ined the number N of occupied sites for the first appear-
ance of the percolation cluster. The number N has been
averaged with varying simulation samples. Then we have
converted it into the fraction p (L)=N,/L* which corre-
sponds to the effective thresholds for each L. The per-
colation cluster has been defined as the cluster which
spans the cubic cell at least in one direction. This condi-
tion corresponds to the rule R, in Ref. [11] in the case of
3D lattices. The results are shown in Table II, where the
first column shows the size L, the second the average
fraction pFBC(L) for an FBC, and the third p?®<(L) for a
PBC. The fractions pFBS(L) increase with increasing L
as shown in Table II. The fractions pF2C(L) decrease
with increasing L. The fourth column in Table II shows
the absolute values Ap=|pFBS(L)—pPBE(L)| of the
differences between p (L) and p?B(L) for each L. The
differences decrease with increasing L.
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We examine the standard deviations of pFBC(L) and
pFBE(L). The fifth column in Table II shows the devia-
tions of3C for p¥™C(L) and the sixth shows of5C for
pPBE(L). The deviations o55C decrease with increasing
L. The deviations of5C have almost the same values as
oFBC for each L: the deviations o55C decrease with in-
creasing L.

Here we see, in more detail, the differences Ap between
the average fractions pF®(L) and p?®(L) in Table II.
The difference Ap for L =12 is 0.023 26 which is smaller
than ¢fB8€=0.027 84 and than ¢55¢=0.02530. This re-
lation is valid for all L in this table: all the differences Ap
are smaller than the 055€ and than the oF5C for each L.
The ratios 0F5€/Ap are shown in the seventh column in
the table. The ratios are almost constant between 1.02
and 1.09. This indicates the differences are smaller than
the deviations which show the extent of the statistical
fluctuations for the effective thresholds in this lattice.

In order to examine the value of p, as L — «, we have
used the scaling rule (2). The exponent v in (2) has been
found to be 5 for all lattices with an FBC in 3D [1,4].
The effective thresholds p¥BS(L) and pPBC(L), which
have appeared in Table II, have been plotted against the
scaled size L, =L ~!/¥ with v= - . Figure 4 shows the re-
sults. Filled squares are for pf®°(L) and open ones for
pPBE(L). The values pFBC(L) increase linearly with de-
creasing L ~!/". The straight line for pFB¢(L) shows the
least-square fitting of the values. The line for pB¢(L) in-
tersects the abscissa at p =0.3115 which deviates by only
0.064% from the value 0.3117 of the threshold [1,4] for
this lattice. A linear relation appears between pPBC(L)
and L 71": the pPBS(L) decrease linearly with decreasing
L~ This indicates the universarity of the exponent v
is valid even for a PBC. The line for p?BS(L) intersects
the abscissa at the same point as the above: the thresh-
olds p. for a PBC coincides with the threshold for an
FBCas L — oo.

Although the differences Ap between pFPC(L) and
pPBE(L) have been smaller than the standard deviations
for each L as shown in Table II, the clear relation ap-
pears between them as shown in Fig. 4: the effective
thresholds are closer to p, for an FBC than for a PBC in
the case of the site process of the simple cubic lattice.
This result differs from the result for the square lattice:
accuracy of p (L) varies from system to system in the pro-
cess.

V. CRYSTALLIZATION AND SYSTEM SIZE

Influence of system size has been reported to appear in
the crystallization process from the liquid state by means

TABLE II. The effective thresholds and the standard deviations for the simple cubic lattice with an

FBC and a PBC.

L prL) L) Ap alne ohae otiC/Ap
12 0.30613 0.329 39 0.02326 0.027 84 0.025 30 1.09
15 0.307 66 0.326 16 0.018 50 0.02096 0.01946 1.05
18 0.308 15 0.32411 0.01596 0.01792 0.016 33 1.02
20 0.308 41 0.322 33 0.01392 0.01627 0.014 43 1.04
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FIG. 4. The effective thresholds against the scaled size
L,=L """ for the simple cubic lattice. The exponent v is 2 for

this system. Filled squares are for pF(L) and open ones for
pFBE(L).

of the MD simulation [13-15]. Tanemura et al. have
simulated homogeneous nucleation and growth processes
in the supercooled liquid of the soft-core system [13].
They have found a PBC has influenced the shape of the
nucleus formed in the liquid with the simulation: the nu-
cleus has developed with time anisotropically in the
liquid [13]. Honeycutt and Andersen have examined the
time to catastrophic growth of the crystal in the super-
cooled liquid of the Lennard-Jones system [14,15]. They
have found the time has depended on the total number N
of atoms in the simulation: the time increased with in-
creasing system size N [14]. Figure 5, which has been
presented in Ref. [14], shows the time as a function of the
number N. Filled squares are for the average time for
each N. The time increases with increasing N and seems
to saturate at time between =100 and ¢=120 as
N — . They have found the number of the atoms in the
critical nucleus for growth has depended on the system
size: their number has increased with increasing system
size [15]. The above results may imply the classical nu-
cleation theory is inefficient in describing the crystalliza-

120

80

40

0 600 1200

N

FIG. 5. The time to catastrophic growth of the crystal as a
function of the system size N in the MD simulation. Filled
squares are for the average time which have been presented in
Ref. [14]. The unit of the ordinate is 7=(mo?/¢)'/%, where m is
the mass of an atom, € is the Lennard-Jones attraction parame-
ter, and o corresponds to the distance at the first zero of the po-
tential. A curve shows the least-square fitting of formula (6).
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tion process observed in the MD simulation with a PBC:
the theory assumes the shape of the nucleus is spherical
and its size is constant for a specified material.

Here let us interpret the relation in Fig. 5 in the frame-
work of the percolation theory. First we consider solid-
like atoms in supercooled liquid as occupied sites in the
percolation system. Then we increase the number of oc-
cupied sites, as the increment of the number of atoms
with time, at random in the MC cell. This shows time in
the MD systems corresponds to the fraction p of the
number of the occupied sites to the total number of the
sites in the MC systems. Here we regard the appearance
of the percolation cluster in the MC cell with a PBC as
the formation of the critical nucleus in the MD cell with
a PBC. Since the size of the “nucleus” in the above mod-
el is infinite under a PBC, such a nucleus can grow cer-
tainly in liquids and never vanishes. The formation of the
critical nucleus means the onset of crystal growth in the
system. Thus the effective thresholds correspond to the
time of onset of the growth in the MD simulation.
Jouhier et al. have analyzed solidification processes (sol-
gel transition) of a polymer by the use of the same model
as the above [18]. In this study, they have considered
that the relation between the fraction p and time is linear:
solidification time has been regarded as the percolation
threshold [18].

Let us apply the above model in order to clarify the re-
lation between the time and the system size. First we
rewrite formula (2) as

t(L)=t(o0)+kL ™", 3)
with the following relation:
t(L)<p(L), (4)

where ¢ (L) is the time of onset of catastrophic growth for
system size L in the MD simulation. Here the size L is
L =N'3, where N corresponds to the total number of
atoms in the MD cell. Formula (3) is transformed into

t(L)=t(o0)+kN13 (5)

In Sec. IV, the value of v has been found to be v= 3 for
the percolation system with a PBC in the case of a 3D
lattice. This gives

t(L)=t(o0 )+ kN 10727 (6)

Here we examine whether or not formula (6) is valid
for the relation between the time to the growth of the
crystal and the system size N as shown in Fig. 5. We
have obtained the values of #( o) and k in (6) by use of
the least-square fitting of the average time in Fig. 5. The
values have been found to be ¢(o)=124.3 and
k =—657.6. A curve in this figure shows the result with
these values. The curve is found to be suitable in approx-
imating the relation between the time and the system size
N. This shows formula (6) is valid in describing the effect
of the system size for the time of onset of catastrophic
growth of the crystal observed in the MD simulation with
a PBC.
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VI. DISCUSSION

We have found the standard deviations in Tables I and
II have depended on the system size L for the square and
the simple cubic lattices: the values of the deviations
have decreased with increasing L. Here we see the devia-
tion as L — co. Figure 6 shows the deviations of pFBS(L)
and pPBC(L) for the square lattice. Filled squares are for
p¥BE(L) and open ones for pPBS(L). The standard devia-
tions for each L are shown as the error bars around them.
Straight lines in this figure show the extrapolation of the
deviations. All the lines in Fig. 6 converge on the same
point on the abscissa. This indicates the width of the de-
viation is 0 as L — o« not only for an FBC but also for a
PBC in the square lattice. Figure 7 shows the deviations
of pfBX(L) and pFBY(L) for the simple cubic lattice.
Filled squares are for p (L) and open ones for pPB(L).
The standard deviations for each L are shown as the er-
ror bars around them. Straight lines show the extrapola-
tion of the deviations. All the lines in Fig. 7 converge on
the same point on the abscissa. This indicates the width
of the deviations is 0 as L — o not only for an FBC but
also for a PBC in the simple cubic lattice.

By means of the percolation model as shown in Sec. V,
the effect of system size has been examined for the time of
onset of crystal growth in the MD simulation. In this
model we have increased the number of occupied sites in
the MC cell as increments of the number of solidlike
atoms with time in the MD cell. This is found to be valid
from the following fact. In the MD simulations, we have
observed decrement of pressure [19] and volume [20] of
systems with time from onset of annealing prior to the
crystallization event. We have found some parameters,
which analyze local arrangement of atoms, have changed
with time in the simulation from the onset of annealing
[20]. The local symmetry parameter W(,, Volonoi face
ratio n4, and the ratio ng have increased with time. On
the other hand, the ratio ns has decreased with time in
the simulation [20]. These changes indicate the number
of atoms with local crystal structure has increased with
time from the onset of annealing prior to the event. This

0.12
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i
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0.52 0.58 0.64
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FIG. 6. Standard deviations around the effective thresholds
for the square lattice. Filled squares are for p¥(L) and open
ones for pPB(L). The deviations are shown as the error bars
around them. Straight lines are the extrapolation of the devia-
tions.
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FIG. 7. Standard deviations around the effective thresholds
for the simple cubic lattice. Filled squares are for p¥®(L) and
open ones for p?BS(L). The deviations are shown as the error
bars around them. Straight lines are the extrapolation of the de-
viations.

is the evidence for the increment of the atoms with local
crystal structure in annealing simulations with time.
This shows the above model, i.e., correspondence be-
tween the fraction p and time, is valid in describing the
crystallization process observed in the MD simulation.

In this model, we have defined the formation of the
critical nucleus in the MD simulation as the appearance
of the percolation cluster in the MC simulation. This im-
plies the nucleus formed in the MD simulation should ex-
tend through the simulation cell. This definition is found
to be valid. Tanemura ef al. have found the nucleation
has proceeded anisotropically with a one-dimensional ex-
tension of the nucleus from one side to the other side of
the cubic cell with time in the supercooled liquid of the
soft-core system by means of the MD simulation [13].
This contradicts the classical nucleation theory which
predicts a spherical nucleus in the liquid. Honeycutt and
Andersen have examined the shape of nuclei formed in
the supercooled liquid of the Lennard-Jones system with
the MD simulation [15]. They have used the linear-
triplet method for a central atom in order to know
whether or not the central atom has local crystal struc-
ture around it. The shape of the nucleus formed in the
liquid has been anisotropic for the criteria 162° and 165°
which are cutoff angles in the linear triplet around an
atom. The weaker criterion 159°, however, has not given
anisotropic extension of the nucleus, but it has given a
spherical extension in the system showing the validity of
the classical nucleation theory. This criterion may be
adequate for the identification of the nucleus appearing in
the liquid. This criterion has allowed the nucleus to ex-
tend between the faces through the simulation cell [15].
They have stated that crystal growth begins when the nu-
cleus becomes large enough to feel the influence of its
periodic images [14]: the critical nucleus must interact
with its images [15]. This indicates the above definition
of the critical nucleus, i.e., correspondence between the
nucleus in the MD simulation and the percolation cluster
in the MC simulation, is suitable.

The influence of the system size has been examined for
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the crystallization process with formula (6) in Sec. V.
The relation has included the exponent v=J which has
been found from the MC simulation for a percolation sys-
tem with a PBC in 3D. The exponent has shown the
same value for the system with an FBC. This indicates
the relation between the time to growth and the system
size is the same as Fig. 5 for crystallization processes in

the MD simulation with an FBC: formula (6) may be
suitable even for the systems with an FBC. It is difficult
to examine, however, whether or not the formula is valid
even for the systems with an FBC in the MD simulations,
since the simulation with an FBC inevitably accompanies
the surface effect which comes from the interactions be-
tween atoms.
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